DR SAMANTHA S STUTZ (Orcid ID: 0000-0002-3999-9726) PROF. DAVID T HANSON (Orcid ID: 0000-0003-0964-9335) Article type : Regular Manuscript # CONTRIBUTION AND CONSEQUENCES OF XYLEM-TRANSPORTED CO_2 ASSIMILATION FOR C_3 PLANTS Authors: Samantha S. Stutz^{1, 2}, David T. Hanson¹ ¹Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA ²Present address: Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA Author for correspondence: Samantha Stutz Telephone: +1 (505) 690-2609 Email: samstutz@illinois.edu Received: 6 August 2018 Accepted: 3 May 2019 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/nph.15907 ## **Summary** - Traditionally, leaves were thought to be supplied with CO₂ for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves by the bulk flow of water. However, little is known about the dynamics and proportion of xylem-transported CO₂ that is assimilated, versus simply lost to transpiration. - Cut leaves of *Populus deltoides* and *Brassica napus* were placed in either KCl or one of three [NaH¹³CO₃] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem-transported CO₂ exiting the leaf across light- and CO₂-response curves in realtime using a tunable diode laser absorption spectroscope. - The rates of assimilation and efflux of xylem-transported CO₂ increased with increasing xylem [¹³CO₂*] and transpiration. Under saturating irradiance, rates of assimilation using xylem-transported CO₂ accounted for ~2.5% of the total assimilation in both species in the highest [¹³CO₂*]. - The majority of xylem-transported CO₂ is assimilated, and efflux is small compared to respiration. Assimilation of xylem-transported CO₂ comprises a small portion of total photosynthesis, but may be more important when CO₂ is limiting. Key words: $Brassica\ napus$, CO_2 efflux, internally transported CO_2 , leaf photosynthesis models, $Populus\ deltoides$, stem $[CO_2^*]$, tunable diode laser absorption spectroscopy, xylem-transported CO_2 # **INTRODUCTION** Traditionally, aside from mitochondrial respiration in the same cell or immediately adjacent cells, CO_2 for photosynthesis was assumed to diffuse from the atmosphere through the stomata into the intercellular air space. This CO_2 then diffuses into the mesophyll cells eventually making it to the site of ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) in the chloroplast where it will be used for photosynthesis. However, recent work has shown that the concentration of total dissolved inorganic carbon ($[CO_2^*]$, the sum of $[CO_2]_{aq}$, $[HCO_3^-]$, $[H_2CO_3]$, and $[CO_3^{2-}]$) in the xylem ranges from ~0.05 to ~13 mmol I^{-1} (<1 to 26% CO_2 gas by volume in air equilibrated with xylem sap). These levels are ~30-750 times higher than expected based on current atmospheric $[CO_2]$ (Teskey *et al.*, 2008). Dissolved CO_2 in the stem is derived from root and stem respiration and moves in bulk flow along with water through the plant to the leaf where it is either recaptured or exits via transpiration (Fig. S1). If the concentration of xylem-transported CO_2 is high and reaches the foliage it could provide a major substrate for Rubisco in leaf cells; thus changing the calculations and understanding of the relationship between assimilation and intercellular $[CO_2]$ (C_i) in the Farquhar *et al.* (1980) model of leaf photosynthesis (Hanson & Gunderson, 2009). However, if little xylem-transported CO_2 is recaptured by photosynthesis, xylem-transported CO_2 exiting the leaf in the light may account for some of the variation seen in estimates of respiration in the light. Previous studies have shown that plants utilize xylem-transported CO₂ for photosynthesis by corticular and woody stem tissue (Teskey et al., 2008), by branch tissue (Teskey & McGuire, 2002; McGuire et al., 2009; Bloemen et al., 2013a, b), and by leaves (Stringer & Kimmerer, 1993; McGuire et al., 2009; Bloemen et al., 2013a, b; Bloemen et al., 2015). Cut Platanus occidentalis branches assimilated ~35% of xylem-transported CO₂ when supplied with 11.9 mmol I⁻¹ ¹³CO₂* (McGuire et al., 2009). Over half of the assimilated xylem-transported CO₂ was incorporated into the woody branch tissues and nearly a third into the leaves (McGuire et al., 2009). A similar study estimated that assimilation of xylem-transported CO₂ represented ~2% of net total photosynthesis in *Populus* deltoides (Bloemen et al., 2013a). These studies demonstrate that xylem-transported CO₂ taken up by a cut branch will make it to the leaves where it is used for photosynthesis and generate similar results to those where individual leaves were supplied label through the petiole (Stringer & Kimmerer, 1993; Bloemen et al., 2015). However, when saplings were supplied labeled inorganic carbon through the base of their stems less of the xylem-transported CO2 was incorporated into the above-ground portions of the plant (Bloemen et al., 2013b), presumably due to the longer pathlength through the plant. Since the percent captured declines at the highest concentrations of xylem-supplied ¹³C (Bloemen et al., 2013a), it appears that conditions leading to high rates of xylemtransported CO₂ supply also lead to greater rates of loss relative to rates of re-capture by photosynthesis. If this flux of xylem-transported CO₂ out of leaves is large, it may account for some of the variation observed in rates of day respiration. Current models of leaf photosynthesis incorporate CO₂ evolution from the mitochondria in the light not associated with photorespiration (R_d) (Farquhar *et al.*, 1980); additionally, models assume that all fluxes of CO₂ exiting a leaf are derived from metabolism occurring in leaf cells. While it is generally thought that rates of respiration are lower in the light compared to the dark (Kok, 1948, 1949; Tcherkez *et al.*, 2017a), it is difficult to measure rates of respiration in the light while leaves are photosynthesizing. Variation in the inhibition of leaf respiration in the light may be complicated by an efflux of xylem-transported CO₂ exiting the leaf. For instance, when rates of assimilation are low, as occurs under low irradiance or low CO₂, the overall proportion of day respiration is greater than when rates of assimilation are high, as occurs under high irradiance and high CO_2 (Tcherkez *et al.*, 2017b). If the efflux of xylem-transported CO_2 out of a leaf is large when irradiance or $[CO_2]$ are low, then it could explain this observation as well as a portion of the Kok effect (Kok, 1949). Although earlier work showed fixation of xylem-transported CO_2 varied with light intensity (Stringer & Kimmerer, 1993) no study has demonstrated the dynamics of the efflux and capture of xylem-transported CO_2 exiting a leaf in the light with respect to simultaneous measurements of stomatal conductance and transpiration. Radiocarbon or mass spectroscopy methods also required destructive sampling and allow only a snapshot at a discrete point in time rather than real-time repeated measures on a single leaf across a range of environmental conditions. Therefore, the objectives of this study are to: 1) determine how much and under what conditions xylem-transported CO₂ is most important for leaf photosynthesis in excised leaves, 2) determine if the concentration of xylem-transported CO₂ changes the modeling parameters for leaf-level photosynthesis, 3) determine how much xylem-transported CO₂ exits (13 C_{light efflux}) a leaf in the light, and 4) if 13 C_{light efflux} has the potential to change estimates of day respiration in excised leaves of a woody and a herbaceous C₃ plant. These objectives were accomplished by adding one of three [NaH¹³CO₃] solutions to cut leaves of *P. deltoides* and *Brassica napus* and measuring rates of 12 C and 13 C assimilation and the efflux of xylem-transported CO₂ exiting the leaf across light- and CO₂-response curves in real-time using a tunable diode laser absorption spectroscope (TDL). We hypothesized that the rates of assimilation using xylem-transported CO₂ (13 A_x) would be greatest when intercellular [CO₂] was low and that the 13 C_{light efflux} would be highest when rates of transpiration were high. #### **MATERIALS & METHODS** # Plant propagation and growth Brassica napus (L. stellar DH GT060615) and Populus deltoides (W. Bartram ex Marshall) were propagated and grown according to Stutz *et al.* (2017). All plants were grown under natural light in an unshaded greenhouse, with mid-day photosynthetically active radiation (PAR) at pot level of approximately 1200 μmol m⁻² s⁻¹ at the University of New Mexico in Albuquerque, NM, USA, under ambient CO₂, 24°C/21°C day/night. *B. napus* and *P. deltoides* were fertilized twice weekly with Peters 20-20-20 fertilizer (Scotts Miracle-Gro, Marysville, OH, USA) and once weekly with chelated liquid iron (ferti-lome, Bonham, TX, USA). *B. napus* plants were measured between 14 and 25 days after geminating. #### Light-response curves A LI-6400 (LI-COR Biosciences, Lincoln, NE, USA) was coupled to a tunable diode laser absorption spectroscope (TDL-model TGA 100; Campbell Scientific, Inc., Logan, UT, USA) to measure online ¹²CO₂ and ¹³CO₂ exchange. Isotope calibration consisting of a high and low CO₂ tank spanning the expected range of [CO₂] of each isotopologue for the LI-COR reference and sample was completed as previously described in Barbour et al. (2007) and Stutz et al. (2017). The highest fully expanded leaf for B. napus or a fully expanded P. deltoides leaf was placed
in a clear topped, custom leaf chamber 38.5 cm² made to fit an RGB LED light source (LI-6400-18, LI-COR Biosciences, Lincoln, NE, USA) attached to a LI-6400 at 23°C (leaf temperature), 380 μmol mol⁻¹ CO₂ reference at 1200 umol quanta m⁻²s⁻¹ or 1500 umol quanta m⁻²s⁻¹ for *B. napus* and *P. deltoides*, respectively. This large leaf chamber (roughly six times large than a standard LI-COR leaf chamber) was used to ensure the fluxes of each CO₂ isotopologue were large enough to be easily measured by the TDL; the standard deviation of empty chambers were ~ 0.1 ppm and ~ 0.001 ppm for $[^{12}CO_2]$ and $[^{13}CO_2]$, respectively. Once photosynthesis reached a steady state (~30 minutes), the leaf was detached from the plant and the petiole placed in a 40 mmol l⁻¹ KCl solution. The KCl solution was swapped for 99% ¹³C sodium bicarbonate (NaH¹³CO₃—Cambridge Isotope Laboratories, Inc. Andover, MA, USA) dissolved in 40 mmol l⁻¹ KCl at one of three [¹³CO₂*]: 1.19 (low-carbon—LC), 5.95 (medium-carbon—MC), or 11.9 (high-carbon—HC) mmol I⁻¹ [¹³CO₂*], or the leaf was left in the KCl solution for the measurement. Individual leaves were provided a single [13CO₂*] or left in the 40 mmol l⁻¹KCl solution according to Stutz et al. (2017). Once cut and placed in the [13CO₂*] the leaf remained at the starting irradiance (1200 μ mol quanta m⁻² s⁻¹ B. napus or 1500 μ mol quanta m⁻² s⁻¹ P. deltoides) until δ ¹³C and [13CO₂] peaked and either plateaued or decreased, which took approximately 20-30 minutes, before continuing with the light-response curve. The light-response curves were measured in the following order for B. napus: 1200, 1000, 800, 500, 350, 250, 200, 175, 150, 125, 100, 75, 50, 35, 0 µmol quanta m⁻² s⁻¹ and the following order for *P. deltoides*: 1500, 1000, 800, 500, 250, 200, 175, 150, 125, 100, 75, 50, 35, 0 μmol quanta m⁻² s⁻¹. Five measurements were made at each irradiance. Five leaves from both species were measured in the KCl and each [13CO₂*]. ## CO2-response curves For the CO_2 -response curves, the highest fully expanded leaf for *B. napus* or a fully expanded *P. deltoides* leaf, was placed in the same LI-6400 custom leaf chamber as was used for the light-response curves at 23°C (leaf temperature) at 1200 μ mol quanta m⁻²s⁻¹ or 1500 μ mol quanta m⁻²s⁻¹ for *B. napus* and *P. deltoides*, respectively. The CO_2 reference on the LI-6400 was set so the $[CO_2]$ at the leaf surface was approximately 400 µmol mol⁻¹, which was between 500 and 600 µmol mol⁻¹ CO_2 reference $[CO_2]$ for both species. As with the light-response curves, attached leaves were left in the chamber for approximately 30 minutes before the petiole was cut and placed in a 40 mmol Γ^1 KCl solution for ~16 minutes. The leaves were then transferred to a single 99% Γ^1 C sodium bicarbonate (NaH Γ^1 CO3) solution (LC, MC, or HC) or remained in the KCl solution, as in the light-response curves. The leaf was left at the starting $[CO_2]$ until the Γ^1 C and Γ^1 CO2 readings on the TDL stabilized approximately 20 to 30 minutes for each leaf. The Γ^1 CO3 on the LI-6400 reference were applied to the leaf in the following order: starting Γ^1 CO3, 200, 100, 50, 150, 300, starting Γ^1 CO3, 1000, 2000, 1500, 700 and starting Γ^1 CO3. The leaf was left at each Γ^1 CO3 for three cycles on the TDL except for the starting Γ^1 CO3, where the leaf was left until it reached the starting rate of photosynthesis. Following the Γ^1 CO3 where the leaf was left until it reached the starting rate of photosynthesis. # Estimating the rate of xylem-transported CO2 assimilation The predicted rate of net CO_2 assimilation using $^{13}CO_2$ ($^{13}A_{pred}$) was calculated as (Table 1, Fig. S2): $$^{13}A_{pred} = ^{12}A_{obs} * 0.011/0.989$$ Equation 1 where $^{12}A_{obs}$ is the observed rate of net $^{12}CO_2$ assimilation measured with the TDL. The natural abundance of $^{13}CO_2$ and $^{12}CO_2$ are approximately 1.1% and 98.9% of total CO_2 , respectively. Therefore, the rate of $^{13}CO_2$ assimilation is approximately 1.1% of the rate of $^{12}CO_2$ assimilation (0.011/0.989) under normal conditions (Griffis *et al.*, 2004). The efflux of xylem-transported $^{13}CO_2$ exiting the leaf in the light ($^{13}C_{light \, efflux}$) is calculated as (Table 1, Fig. S2): $$^{13}C_{light\ efflux}=^{13}A_{pred}-^{13}A_{obs}$$ Equation 2 where $^{13}\!A_{obs}$ is the rate of net $^{13}\!CO_2$ assimilation measured with the TDL. The rate of net assimilation of xylem-transported CO_2 ($^{13}A_x$) is thus calculated as (Table 1, Fig. 1, Fig. S3): $$^{13}A_x = ^{13}C_{pred\ efflux} - ^{13}C_{light\ efflux}$$ Equation 3 where $^{13}C_{pred\ efflux}$ (Table 1) is the predicted rate of xylem-transported CO₂ exiting the leaf in the absence of assimilation of xylem-transported CO₂. $^{13}C_{pred\ efflux}$ was estimated by generating linear regression models for the LC, MC and HC treatments for *B. napus* and *P. deltoides*, by plotting the $^{13}CO_2$ efflux in the dark ($^{13}C_{dark\ efflux}$) measured with the TDL against the rate of transpiration (Stutz *et al.*, 2017). # Statistical analysis For the light- and CO_2 -response curves, we used the lme4 R package (Bates *et al.*, 2012) to perform linear mixed effects analyses of the relationship between our physiological response variables ($^{12}A_{obs}$, $^{13}A_x$, $^{13}C_{light \, efflux}$ and the percentage of $^{13}A_x$ to total A), species and [$^{13}CO_2^*$]. We set species, [$^{13}CO_2^*$] and irradiance or [CO_2] in the light- and CO_2 -response curves, respectively, as fixed effects. We structured the model to allow for random intercepts for individual leaves. Results were deemed significant at P < 0.05. No data were transformed based on the distribution of the residuals. All statistical analyses were performed in R (version 3.4.2, R Development Core Team 2017). ## **RESULTS** #### Efflux of xylem-transported CO₂ exiting the leaf in the light Rates of efflux of xylem-transported CO_2 in the light ($^{13}C_{light\ efflux}$) change with light up to 250 μ mol quanta m $^{-2}$ s $^{-1}$ and then level off in both species (Fig. 2). In *B. napus*, $^{13}C_{light\ efflux}$ was not significantly different among treatments (Fig. 2a, c, e). However, above the light-compensation point, the low-carbon (LC) treatment was significantly different from the medium-carbon (MC) and high-carbon (HC) treatments (P<0.05); while the MC and HC treatments were not significantly different across any irradiance. In *P. deltoides*, there were significant differences in the 13 C_{light efflux} between the LC and HC treatments (*P*<0.001) and between the LC and MC treatments (*P*<0.05) across all irradiances (Fig. 2b, d, f). Higher rates of 13 C_{light efflux} were observed in leaves with higher transpiration rates within the MC and HC treatments compared to leaves with lower rates of transpiration within a single [13 CO₂*], leading to large error bars observed in *P. deltoides* (Fig. 2d, f). The 13 C_{light efflux} was significantly different among [13 CO₂*] (*P*<0.001) but not between species (*P*=0.43). Differences in 13 C_{light efflux} were most pronounced under low irradiance both among [$^{13}CO_2^*$] and between species (Fig. 2). The rate of $^{13}C_{\text{light efflux}}$ was similar between species in the LC treatment; however maximum rates of $^{13}C_{\text{light efflux}}$ were higher in *P. deltoides* compared to *B. napus* (P<0.001) in the MC treatment (Fig. 2c, d); while rates of $^{13}C_{\text{light efflux}}$ were higher in *B. napus* in the HC treatment compared to *P. deltoides* (P<0.001) (Fig. 2e, f). 13 C_{light efflux} increased slightly with increasing intercellular [CO₂] for both species in the LC, and MC treatments and for *P. deltoides* in the HC treatment (Fig. 3a, b, c, d, f). However, 13 C_{light efflux} decreased with increasing intercellular [CO₂], in *B. napus*, in the HC treatment (Fig. 3e). There were significant differences between species (P<0.001) and among [13 CO₂ *] (P<0.001). ## Rates of assimilation As expected, net rates of assimilation using atmospheric CO_2 ($^{12}A_{obs}$) increased with increasing irradiance and intercellular [CO_2] (Fig. 4c, d, Fig. 5c, d) for both species. Rates of xylemtransported CO_2 assimilation ($^{13}A_x$) also increased with increasing irradiance and [$^{13}CO_2^*$] for both species (Fig. 4a, b). In *B. napus* saturating rates of $^{13}A_x$ were significantly different among the three [$^{13}CO_2^*$] (P<0.001); rates of $^{13}A_x$ and $^{13}A_{obs}$ were significantly different (P<0.05) in the MC and KCI treatments, respectively (Fig. 4a). In *P. deltoides*, under saturating irradiance, rates of $^{13}A_x$ were significantly different among the three [$^{13}CO_2^*$] (P<0.001). However, in *P. deltoides*, rates of $^{13}A_x$ and $^{13}A_{obs}$ were not significantly different between the MC and the KCI treatments (P=0.063) (Fig. 4b). Rates of $^{13}A_{obs}$ in the KCI treatment were similar to the rates of $^{13}A_x$ in the MC treatment for both species, indicating that under LC $^{13}A_x$ is similar to the background rate of photosynthesis using $^{13}CO_2$ derived from the atmosphere. In the CO₂-response curves, rates of $^{13}A_{obs}$ in the KCl treatment increased with increasing [CO₂] and saturated at an intercellular [CO₂] (C_i) of ~700 μ mol mol $^{-1}$ CO₂ for both species (Fig. 5a, b). However, in both species, across all [$^{13}CO_2^*$], rates of $^{13}A_x$ increased with decreasing [CO₂] and peaked at an intercellular [CO₂] of ~150 μ mol mol $^{-1}$ (Fig. 5a, b). In *B. napus*, rates of $^{13}A_x$ and $^{13}A_{obs}$ were significantly different among all treatments (P<0.001). In P. deltoides, rates of $^{13}A_x$ or $^{13}A_{obs}$ were only significantly different in the HC treatment
compared to the MC, LC and KCl treatments when the reference [CO₂] was under 400 μ mol mol $^{-1}$ (P<0.001) (Fig. 5b). The saturating rate of $^{13}A_{obs}$ in the KCl treatment was similar to the highest observed rate of $^{13}A_x$ in the MC treatment; however, occurring at a different C_i. For both species, at an intercellular [CO₂] of ~400 μ mol mol $^{-1}$ rates of $^{13}A_x$ started to decline and continued to decline once saturation was reached for $^{12}CO_2$. Rates of $^{13}A_x$ increased with $[^{13}CO_2^*]$ and were significantly different among $[^{13}CO_2^*]$ (P<0.001). # How do rates of $^{13}A_x$ compare to rates of $^{13}C_{light\ efflux}$? The rate of $^{13}C_{light\ efflux}$ was lower than the rate of $^{13}A_x$ across all irradiances in the LC and HC treatments, in *B. napus* (Fig. 2a, e). However, in the MC treatment, the rate of $^{13}C_{light\ efflux}$ was greater than the rate of $^{13}A_x$ when irradiance was less than 800 μ mol quanta m⁻² s⁻¹ but under higher irradiances, this reversed (Fig. 2c). In *P. deltoides,* in the MC and HC treatments, the rate of $^{13}C_{light\ efflux}$ was greater than $^{13}A_x$ when the irradiance was under 500 μ mol quanta m⁻² s⁻¹; however, when irradiance was greater than 500 μ mol quanta m⁻² s⁻¹ rates of $^{13}A_x$ were greater (Fig. 2d, f). In the LC treatment, above the light-compensation point rates of $^{13}A_x$ were greater than the rate of $^{13}C_{light\ efflux}$ (Fig. 2b). In the CO₂-response curves, rates of 13 A_x were always equal to or greater than rates of 13 C_{light} efflux</sub> across all [13 CO₂*] and C_i for both species (Fig. 3). With increasing C_i the rate of 13 A_x and 13 C_{light} efflux</sub> approached each other in the LC and MC treatments, in *B. napus* (Fig. 3a, c). However, in the HC treatment for *B. napus* both 13 A_x and 13 C_{light efflux} declined with increasing C_i (Fig. 3e). #### Contribution of xylem-transported CO₂ assimilation to total assimiation In both species, the percentage of 13 A_x as a total contribution to photosynthesis increased with decreasing irradiance and peaked near the light-compensation point (Fig. 6a, b). In *B. napus*, the contribution of 13 A_x to total photosynthesis increased with increasing [13 CO₂*]. The highest percentage of 13 A_x to total photosynthesis were 0.98% (LC), 4.9% (MC) and 5.9% (HC) (Fig. 6a) which occurred near the light-compensation point. The greatest contribution of xylem-transported CO₂ to total photosynthesis were 0.3% (LC), 1% (MC), and 2.5% (HC), all occurring at an irradiance of 250 µmol quanta $^{-2}$ s⁻¹ (Fig. 6a). In *P. deltoides* the highest contribution of 13 A_x to total photosynthesis occurred near the light-compensation point; however, the contribution was highest in the MC treatment (8%) compared to the LC (1.6%) and HC (3.4%) treatments (Fig. 6b). The percentage of 13 Clight efflux to total photosynthesis was similar to the percentage of 13 A_x as a contribution to photosynthesis across all irradiances (Fig. S4). The highest percentage of 13 Clight efflux to total photosynthesis occurred when irradiance and rates of transpiration were low (Fig. S4). The percentage of $^{13}C_{light efflux}$ that exited the plant compared to total assimilation was higher in *P. deltoides* compared to *B. napus* across all $^{13}CO_2^*$ (Fig. S4). In the CO₂-response curves, the percentage of 13 A_x as a total contribution of photosynthesis increased with decreasing [CO₂] and peaked at the lowest [CO₂] for both species across all [13 CO₂*]. In *B. napus* the maximum contribution of 13 A_x to total photosynthesis was 0.7% (LC), 3.8% (MC) and 8% (HC) (Fig. 7a); while in *P. deltoides* the maximum contribution of 13 A_x to total photosynthesis was 3.8% (LC), 7.3% (MC) and 10% (HC) (Fig. 7b). In the CO₂-response curves, the percentage of 13 C_{light} efflux</sub> to total photosynthesis in *P. deltoides* compared to *B. napus* across all [CO₂] (Fig. S5). The highest percentage of 13 C_{light efflux} to total photosynthesis occurred when rates of transpiration were higher and decreased with decreasing rates of transpiration and stomatal conductance (Fig. S5). In order to determine if the $^{13}C_{light\ efflux}$ could ever reach the rate of respiration in the dark (R_d) or ½*R_d in the light, the rate of $^{13}C_{light\ efflux}$ from all [$^{13}CO_2^*$] was plotted with the average rate of dark respiration across all [$^{13}CO_2^*$] for each species (black line) and ½*R_d (dotted line) (Figs. 6c, d, 7c, d) for both the light- and CO_2 -response curves. In the light-response curves, the rate of $^{13}C_{light\ efflux}$ is well below the rate of ½*R_d and R_d across all [$^{13}CO_2^*$] for both species (Fig. 6c, d). Across all [$^{13}CO_2^*$] and [$^{13}CO_2^*$] the rate of $^{13}C_{light\ efflux}$ was well below the R_d and ½*R_d (Fig. 7c, d). ## **DISCUSSION** Our method, of placing a cut leaf in a solution of $[^{13}CO_2^*]$ and measuring gas exchange using a custom LI-6400 leaf chamber coupled to a tunable diode laser absorption spectroscope (TDL), allowed for real-time measurements of the efflux of xylem-transported CO_2 out of the leaf in the light $(^{13}C_{light\,efflux})$, along with calculated rates of assimilation of xylem-transported CO_2 $(^{13}A_x)$ for both a woody species, *Populus deltoides* and a herbaceous species, *Brassica napus*. We observed $^{13}C_{light\,efflux}$, and $^{13}A_x$ across all $[^{13}CO_2^*]$ (the sum of $[CO_2]_{aq}$, $[HCO_3^-]$, $[H_2CO_3]$, and $[CO_3^-]$) in the light- and CO_2 -response curves for both species (Fig. 2, 3, 6). As expected, rates of $^{13}C_{light\,efflux}$ and $^{13}A_x$ increased with increasing $[^{13}CO_2^*]$ for both species in the light- and CO_2 -response curves (Fig. 2, 3). We found that xylem-transported CO_2 was most important to photosynthesis when the intercellular $[CO_2]$ (C_1) was low, which occurred under high irradiance and low $[CO_2]$ (Fig. 4a, b, 5a, b). Under saturating irradiance, the contribution of $^{13}A_x$ to total photosynthesis was between 0.2% and 2.5% going from the LC to HC treatments (Figs. 6, S4). We found the highest percentage of $^{13}C_{light\,efflux}$ to total photosynthesis occurred under low irradiance and low $[CO_2]$ (Figs. S4, S5) and was between 0.2% and 6% in the light-response and 0.1% and 11% in the CO_2 -response (Fig. S4, S5). ## How large is the efflux of xylem-transported CO2 exiting a leaf in the light? Xylem-transported CO₂ (CO₂*, the sum of [CO₂]_{ao}, [HCO₃*], [H₂CO₃], and [CO₃**-]) must travel through the stems and/or terminal branches of a plant before it can reach the leaves. Inside the leaves CO2* travels from the small veins in the leaf to the mesophyll cells (Fig. S1) (Hanson et al., 2016). Water diffusing through the leaf can travel apoplastically or symplastically (Buckley, 2015) but water must enter the symplast for CO_2^* to be used for photosynthesis (see Stutz & Hanson, 2019). However, what species of inorganic carbon (i.e. [CO₂]_{aq}, [HCO₃], [H₂CO₃], and [CO₃²⁻]), the location and concentration of carbonic anhydrase and carboxylases, the connectivity of the atmosphere to air spaces between cells (Stutz & Hanson, 2019), and the concentration of the CO2* will greatly influence how much CO₂* is used for photosynthesis. Bloemen et al. (2013b) hypothesized that any CO₂* that reached the leaves of *P. deltoides* saplings would be inconsequential compared to the CO₂ entering the leaves from the atmosphere, thus, resulting in no net loss of xylem-transported CO₂ from leaves. However, when Bloemen et al. (2015) placed cut P. deltoides leaves either in a ¹³CO₂ or KCl solution in the same Plexiglass box for a 2 hour length of time they detected that between 6% and 15% of the total assimilates in unlabeled leaves originated from xylem-transported CO₂ that effluxed from the labeled leaves. Additionally, Stringer & Kimmerer (1993) measured the efflux of ¹⁴CO₂ in cut *P. deltoides* leaves and found that less than 1% of the $^{14}CO_2$ label escaped out the leaves in the light. We also observed a small but measurable efflux of xylem-transported CO₂ out of cut leaves in the light across all [13CO₂*] in both the light- and CO₂response curves (Fig. 2, 3). However, when compared to total assimilation the contribution of xylem-transported CO₂ to total assimilation or the ¹³C_{light efflux} to total assimilation was very low across all [13CO₂*] in both light- and CO₂-response curves. The highest rates of 13C_{light efflux} occurred when rates of transpiration and stomatal conductance were highest, which occurred when vapor pressure difference (VPD) and C_i were lowest (Fig. 2, 3). We found that rates of transpiration, controlled by VPD, along with stomatal conductance indicated how much xylem-transported CO₂ exited the leaf in the light, which was also true for the dark (Stutz et al., 2017). Rates of 13 C_{efflux} out of cut *Platanus occidentalis* branches were 52% lower in the light compared to the dark (McGuire *et al.*, 2009), rates of 14 CO₂ efflux out of cut *P. deltoides* leaves decreased 83% under an irradiance of 70 μ mol quanta m⁻² s⁻¹ in the light compared to the dark (Stringer & Kimmerer, 1993). In the light, we observed 87%, 68%, and 55% declines in 13 C_{light efflux} relative to dark in the LC, MC, and HC, respectively, at a transpiration rate of 2.0 mmol H₂O m⁻² s⁻¹ in *B. napus* (Fig. S6) and 87%, 46%, and 40% declines in 13 C_{light efflux} relative to the dark in the LC, MC, and HC, respectively, at a transpiration rate of 2.3 mmol H₂O m⁻² s⁻¹ in *P. deltoides* (Fig. S6). At medium and high [$^{13}CO_2^*$], the percentage of xylem-transported CO_2 used for photosynthesis was less than at low [$^{13}CO_2^*$], and consequently, the percentage of $^{13}CO_2$ exiting the leaf was higher at the higher [$^{13}CO_2^*$]. When *P. deltoides* saplings were labeled in the field 82.6% and 94.4%
of xylem-transported CO_2 exited the saplings in a low (1.4 mmol Γ^1) and high (12 mmol Γ^1) [$^{13}CO_2^*$] treatments; despite providing more xylem-transported CO_2 the use of xylem-transported CO_2 by *P. deltoides* did not increase as much as the rate of loss (Bloemen *et al.*, 2013b). At our medium and high [$^{13}CO_2^*$], we also observed an increase in $^{13}C_{\text{light efflux}}$ that was greater than the increase in re-assimilation, indicating diminishing returns under conditions leading to a higher supply of xylem-transported CO_2^* in C_3 plants, even at C_i values where photosynthesis is CO_2 limited. However, Kranz-type C_4 species recapture a much larger portion of xylem-transported CO_2^* for photosynthesis (Stutz & Hanson, 2019). High rates of $^{13}C_{\text{light efflux}}$ are not limited to low rates of $^{13}A_x$, rather the highest rates of $^{13}C_{\text{light}}$ efflux coincide with the highest rates of $^{13}A_x$. This indicates that the supply of CO_2^* for photosynthesis, which is controlled by the rate of transpiration, is critical for controlling how much xylem-transported CO_2 is used for photosynthesis as well as how much is lost. Open stomata allow atmospheric CO_2 into the leaf, but also let xylem-transported CO_2 out. # When is xylem-transported CO₂ assimilation most important Rates of 13 A $_x$ were measurable in all $[^{13}$ CO $_2^*]$ and increased with increasing $[^{13}$ CO $_2^*]$ provided through the xylem. High rates of 13 A $_x$ occurred when the rate of transpiration was high and the intercellular $[CO_2]$ was low for both species. In the light-response curves, CO_2^* utilization followed similar patterns to CO_2 originating from the atmosphere; however, in the CO_2 -response curves, CO_2^* utilization was highest under low $[CO_2]$, indicating a balance of the supply and demand of CO_2^* for photosynthesis. Rates of 12 A $_{obs}$ were the same in P. deltoides across all $[^{13}$ CO $_2^*]$; however, in B. napus rates of 12 A $_{obs}$ were lower in the HC treatment compared to all other treatments in both the light-and CO_2 -responses. In the CO₂-response curves, CO₂* was most important to overall photosynthesis when Rubisco was CO₂ limited (Sharkey *et al.*, 2007). Rates of 13 A_x were highest below 200 μ mol mol $^{-1}$ CO₂ when CO₂ is limiting for photosynthesis (Sharkey *et al.*, 2007). We observed the peak of 13 A_x occurring when [CO₂] was 100 μ mol mol $^{-1}$ CO₂ across all [13 CO₂*] and both species (Fig. 3). Below this [CO₂] there was a decline in 13 A_x which is likely a result of deactivation of Rubisco (Sharkey *et al.*, 2007). The combination of low supply of atmospheric CO₂ (low intercellular CO₂) and high rates of transpiration and stomatal conductance supplying high quantities of [CO₂*] to the leaf resulted in the observed high rates of $^{13}A_x$ when the [CO₂] was low. As the atmospheric [CO₂] increased, the rate of transpiration supplying $\mathrm{CO_2}^*$ to the leaf and stomatal conductance declined. This diluted a proportion of xylem-transported $\mathrm{CO_2}$ in the intercellular air space and decreased the possibility of the xylem-transported $\mathrm{CO_2}$ being used for photosynthesis. #### Does xylem-transported CO₂ matter for photosynthesis? It is well established that cut branches with attached leaves, as well as cut leaves can use xylem-transported CO_2 for photosynthesis (McGuire $et\ al.$, 2009; Stringer & Kimmerer, 1993; Bloemen $et\ al.$, 2015); however, when labeled xylem-transported CO_2 is applied to the roots or shoots of a plant only small quantities of xylem-transported CO_2 is used for leaf photosynthesis (Bloemen $et\ al.$, 2013a, b) or not observed in leaf tissue (Powers & Marshall, 2011). The real-time rates of xylem-transported CO_2 assimilation are low compared to assimilation rates using CO_2 from the atmosphere, especially when considering that most plants have $[CO_2^*]$ in the xylem near our LC treatment. The $[CO_2^*]$ we added to cut leaves are well within stem $[CO_2^*]$ measured in the field for $P.\ deltoides$, 2.8 to 35 mmol I^{-1} (Saveyn $et\ al.$, 2008; Aubrey & Teskey, 2009); the average branch $[CO_2^*]$ measured in this cohort of $P.\ deltoides$ was 2.8 mmol I^{-1} (Stutz $et\ al.$, 2017). However, it is unknown how $[CO_2]$ differ between the stem and branches, therefore, making it impossible to estimate how much xylem-transported CO_2 maybe reaching the leaves of a large tree (Stutz $et\ al.$, 2017). Stem $[CO_2^*]$ in $B.\ napus$ was 0.7 mmol I^{-1} (Stutz $et\ al.$, 2017) which was much lower than the $[CO_2^*]$ in this study. We observed a C_i difference of less than 10 μ mol mol⁻¹ when accounting for xylem-transported CO_2 across all treatments (Tables S1, S2). Therefore, it is unlikely that xylem-transported CO_2 would significantly change our estimations of parameters for general leaf-level photosynthesis models as Hanson & Gunderson (2009) postulated. However, when considering over the life of a plant xylem-transported CO_2 may play a significant role in total net photosynthesis needed for growth. The rate of $^{13}C_{light \, efflux}$ in the HC treatment was approximately a tenth of the rate of dark respiration in *B. napus* and about a fifth the rate of dark respiration in *P. deltoides* therefore, xylemtransported CO_2 exiting the leaf will only affect estimates of respiration in the light for plants on the high end of measured xylem CO_2 concentrations. However, if one assumes that rates of day respiration are half the rate of dark respiration, the rate of $^{13}C_{light \, efflux}$ in the HC treatment would account for 40% of the efflux of CO_2 out of a leaf in the light in *B. napus* and 20% in *P. deltoides*. In the future, we would like to see how much 13 C was acid stable to determine definitively how much xylem-transported CO_2 was fixed by the leaf vs. the amount remaining as unreacted inorganic carbon. We expected most of the xylem-transported CO_2 to be found in sugars based on the work by Stringer & Kimmerer (1993), that found 47.5% of the [$^{14}CO_2$] added to cut *P. deltoides* leaves was fixed by sugars in the light and that 9.4% of the xylem-transported CO_2 was residual in the leaf. #### **CONCLUSION** Unlike previous studies, our technique of using a LI-6400 coupled to a TDL allows for real-time measurements of the rates of xylem-transported CO_2 assimilation and the efflux of xylem-transported CO_2 out of a cut leaf in the light from both a herbaceous and woody C_3 plant. This relies on a transpiration-based estimation of the amount of xylem-transported CO_2 entering the leaf, which is straight-forward to calculate. Rates of $^{13}A_x$ and $^{13}C_{light\ efflux}$ increased with increasing [$^{13}CO_2^*$] for both the light- and CO_2 -response curves. Both the woody species, *P. deltoides* and the herbaceous species, *B. napus* responded similarly to each other indicating that the effects of petiole and leaf morphology had little impact on how xylem-transported CO_2 was used for photosynthesis. The highest rates of $^{13}A_x$ and $^{13}C_{light\ efflux}$ occurred when the rate of transpiration was high which occurred when irradiance was high and [CO_2] was low. The contribution of $^{13}A_x$ to total assimilation accounted for $^{\sim}2$ to 10% across treatments. It is unlikely that the contribution of xylem-transported CO_2 changes estimates of current models of leaf-level photosynthesis. However, assimilation of xylem-transported CO_2 is likely to be important over the life of a plant and could allow plants to maintain a position carbon balance during adverse conditions. #### **ACKNOWLEDGMENTS** Hossein Goudarzi designed and created figure 1 from conceptual illustrations. Joy Avritt and Lindsey Kaufman assisted with greenhouse and plant maintenance. Dr. Chris Harvey for carefully reading the summary section. This research was supported in part by instrumentation obtained (TDL) through NSF funding (IOS 0719118). Additional support was provided by the University of New Mexico and the NSF EPSCoR Program under Award #IIA-1301346 (New Mexico). Any opinions, finding, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the US NIH. Source for the *B. napus* seeds (J. Chris Pires, University of Missouri-Columbia). Support for SSS was provided by the Dr. Harry Wayne Springfield Fellowship through the Department of Biology, University of New Mexico. #### **AUTHOR CONTRIBUTIONS** S.S.S. performed experiments and analyzed data. D.T.H. provided a conceptual framework. S.S.S. wrote the manuscript with input from D.T.H. #### **REFERENCES** **Aubrey DP, Teskey RO. 2009.** Root-derived CO₂ efflux via xylem stream rivals soil CO₂ efflux. *New Phytologist* **184**: 35-40. **Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT. 2007.** A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO₂. *Plant, Cell & Environment* **30**: 469-482. Bates, DM, Maechler, M., Bolker, B. 2012. Lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. https://www.jstatsoft.org/article/view/v067i01/0 Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K. 2013a. Assimilation of xylem-transported CO₂ is dependent on transpiration rate but small relative to atmospheric fixation. Journal of Experimental Botany 64: 2129-2138. **Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K. 2013b.** Transport of root-respired CO₂ via the transpiration stream affects aboveground carbon assimilation and CO₂ efflux in trees. *New Phytologist* **197**: 555-565. Bloemen J, Bauweraerts I, De Vos F, Vanhove C, Vandenberghe S, Boeckx P, Steppe K. 2015. Fate of
xylem-transported ¹¹C- and ¹³C-labeled CO₂ in leaves of poplar. *Physiologia Plantarum* **153**: 555-564. **Buckley TN. 2015.** The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. *Plant, Cell & Environment* **38**: 7-22. **von Caemmerer S. 2000.** Biochemical models of leaf photosynthesis. Collingwood, Vic., Australia: CSIRO Publishing. Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta* 149: 78-90. **Griffis T, Baker J, Sargent S, Tanner B, Zhang J. 2004.** Measuring field-scale isotopic fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. *Agricultural and Forest Meteorology* **124**: 15-29. **Hanson DT, Stutz SS, Boyer JS. 2016.** Why small fluxes matter: the case and approaches for improving measurements of photosynthesis and (photo)respiration. *Journal of Experimental Botany* **67**: 3017-3039. **Hanson PJ, Gunderson CA. 2009.** Root carbon flux: measurements versus mechanisms. *New Phytologist* **184**: 4-6. **McGuire MA, Marshall JD, Teskey RO. 2009.** Assimilation of xylem-transported ¹³C-labelled CO₂ in leaves and branches of sycamore (*Platanus occidentalis* L.). *Journal of Experimental Botany* **60**: 3809-3817. **Kok B. 1948.** A critical consideration of the quantum yield of *Chlorella* photosynthesis. *Enzymologia* **13**: 1-56. **Kok B. 1949.** On the interrelation of respiration and photosynthesis in green plants. *Biochimica et Biophysica Acta* **2**: 625-631. **Powers EM, Marshall JD. 2011.** Pulse labeling of dissolved ¹³C-carbonate into tree xylem: developing a new method to determine the fate of recently fixed photosynthate. *Rapid communications in mass spectrometry* **25**: 33-40. **R Core Development Team. 2012.** R: A language and environment for statistical computing. Vienna, Austria: Ro Foundation for Statistical Computing. ISBN 3-900051-0700. Available at: http://www.R-project.org (Accessed 19 August 2012). Sharkey TD, Bernacchi CJ, Farquhar GDD, Singsaas EL. 2007. Fitting photosynthetic carbon dioxide response curves for C_3 leaves. *Plant, Cell & Environment* 30: 1035-1040. **Stringer JW, Kimmerer TW. 1993.** Refixation of xylem sap CO₂ in *Populus deltoides. Physiologia Plantarum* **89**: 243-251. **Stutz SS, Anderson J, Zulick R, Hanson DT. 2017.** Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism. *Journal of Experimental Botany* **68**: 2849-2857. **Stutz SS, Hanson DT. 2019.** What is the fate of xylem-transported CO_2 in Kranz-type C_4 plants? *New Phytologist accepted 24 March 2019* Tcherkez G, Mahe A, Gauthier P, Mauve C, Gout E, Bligny R, Cornic G, Hodges M. 2009. In folio respiratory fluxomics revealed by ¹³C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid "cycle" in illuminated leaves. *Plant Physiology* **151**: 620-630. Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous K, Griffin KL, Way DA, Turbull MH, Adams MA, Atkin OK, Bender M, Farquhar GD, Cornic G. 2017a. Tracking the origins of the Kok effect, 70 years after its discovery. *New Phytologist* 214: 506-510. Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous KY, Griffin K, Way D, Turnbull M, Adams MA, Atkin OK, Farquhar GD, Cornic G. 2017b. Leaf day respiration: low CO₂ flux but high significance for metabolism and carbon balance. *New Phytologist* 216: 986-1001. **Teskey RO, McGuire MA. 2002.** Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. *Plant, Cell & Environment* **25**: 1571-1577. **Teskey RO, Saveyn A, Steppe K, McGuire MA. 2008.** Origin, fate and significance of CO₂ in tree stems. *New Phytologist* **177**: 17-32. #### Supporting information (SI) **Table S1** Difference in internal $[CO_2]$ (C_i) taking into account the addition of xylem-transported CO_2 to total C_i in light-response curves. **Table S2** Difference in internal $[CO_2]$ (C_i) taking into account the addition of xylem-transported CO_2 to total C_i in CO_2 -response curves. Calculations are the difference between C_i not accounting for xylem-transported CO_2 and C_i taking into account xylem-transported CO_2 . **Fig. S1** Detailed leaf cross section (modified from Hanson *et al.* 2016) showing ¹³C and ¹²C fluxes in our labeling experiments. Fig. S2 Graphical representation of equation 2, showing the calculation of the efflux of xylem-transported CO_2 out of a leaf in the light ($^{13}C_{light \, efflux}$) is calculated. **Fig. S3** Graphical representation of equation 3, showing the calculation for the rate of assimilation using xylem-transported CO_2 ($^{13}A_x$). **Fig. S4** Proportion of xylem-transported CO_2 used for photosynthesis ($^{13}A_x$) and efflux in the light ($^{13}C_{\text{light efflux}}$) to total assimilation in the light-responses. **Fig. S5** Proportion of xylem-transported CO_2 used for photosynthesis ($^{13}A_x$) and efflux in the light ($^{13}C_{\text{light efflux}}$) to total assimilation in the CO_2 -responses. Fig. S6 Efflux of xylem-transported CO₂ from cut leaves in the dark and light. #### **FIGURES** **Fig 1** Illustration of the fluxes of CO_2 into and out of a cut leaf in the light with inorganic carbon dissolved in the water supplied through the petiole. The water carrying dissolved inorganic carbon travels through the leaf eventually exiting the leaf as the transpiration stream (solid blue arrow). Some of the xylem-transported inorganic carbon carried with the water is used for photosynthesis by the leaf ($^{13}A_x$ —purple dotted arrow—Equation 3) while some of the xylem-transported inorganic carbon exits the leaf as CO_2 ($^{13}C_{light \, efflux}$ —red dotted arrow—Equation 2) and is measured by the TDL. Simultaneously, mostly $^{12}CO_2$ diffuses into the leaf from the atmosphere (purple solid arrow) with a small amount of $^{13}CO_2$ (purple solid arrow) and is used for photosynthesis. Leaf respiration also occurs in the light releasing mostly $^{12}CO_2$ (solid red arrow). **Fig. 2** Light-response curve for rates of xylem-transported CO_2 assimilation ($^{13}A_x$) (circles) and the efflux of $^{13}CO_2$ exiting the leaf in the light ($^{13}C_{light \, efflux}$) (upside down triangles) measured under (a, b) LC (light gray), (c, d) MC (dark gray) and (e, f) HC (closed) on cut leaves of *B. napus* and *P. deltoides*. Measurements represent means and ± 1 SD of five replicates for each treatment. The low-carbon (LC) was 1.19 mmol I^{-1} , medium-carbon (MC) was 5.95 mmol I^{-1} and high-carbon (HC) was 11.9 mmol I^{-1} . **Fig. 3** CO₂-response curve for rates of xylem-transported CO₂ assimilation (13 A_x) (circles) and the efflux of 13 CO₂ exiting the leaf in the light (13 C_{light efflux}) (upside down triangles) measured under (a, b) LC (light gray), (c, d) MC (dark gray), and (e, f) HC (closed) on cut leaves of *B. napus* and *P. deltoides*. Measurements represent means and ±1 SD of five replicates for each treatment. The low-carbon (LC) was 1.19 mmol Γ^{-1} , medium-carbon (MC) was 5.95 mmol Γ^{-1} and high-carbon (HC) was 11.9 mmol Γ^{-1} . **Fig. 4** Light-response curves for rates of photosynthesis with $^{13}CO_2$ ($^{13}A_x$ —photosynthesis using xylem-transported CO_2 , or background rates of $^{13}A_{obs}$ in KCl treatment) and $^{12}CO_2$ ($^{12}A_{obs}$ — photosynthesis using CO_2 derived from the atmosphere). $^{13}A_x$ in (a) *B. napus* and (b) *P. deltoides*, KCl (open circles), LC (light gray circles), MC (dark gray circles), and HC (closed circles). Rates of $^{12}A_{obs}$ for (c) *B. napus* and (d) *P. deltoides*, KCl (open triangles), LC (light gray squares), MC (dark gray squares) and HC (closed squares). Measurements represent means and ± 1 SD of five replicates for each treatment. The low-carbon (LC) was 1.19 mmol Γ^1 , medium-carbon (MC) was 5.95 mmol Γ^1 , and high-carbon (HC) was 11.9 mmol Γ^1 . **Fig. 5** CO₂-response curves for rates of photosynthesis with 13 CO₂ (13 A_x—photosynthesis using xylem-transported CO₂ or background rates of 13 A_{obs} in KCl treatment) and 12 CO₂ (12 A_{obs}—photosynthesis using CO₂ derived from the atmosphere). Rates of xylem-transported photosynthesis in (a) *B. napus* and (b) *P. deltoides*, KCl (open circles), LC (light gray circles), MC (dark gray), and HC (closed circles). Rates of 12 A_{obs} for (c) *B. napus* and (d) *P. deltoides*, KCl (open squares), LC (light gray squares), MC (dark gray triangles) and HC (closed squares). Measurements represent means and ± 1 SD of five replicates for each treatment. The low-carbon (LC) was 1.19 mmol I⁻¹, medium-carbon (MC) was 5.95 mmol I⁻¹ and high-carbon (HC) was 11.9 mmol I⁻¹. In the KCl treatment rates of 13 A_{obs} were measured in place of rates of 13 A_x. **Fig. 6** Light-response curves for the percentage of xylem-transported CO₂ assimilation (13 A_x) to total rates of photosynthesis under LC (gray hexagons), MC (closed hexagons) and HC (open hexagons) for (a) *B. napus* and (b) *P. deltoides*. Light-response curves for the efflux of 13 CO₂ exiting the leaf in the light (13 C_{light efflux}) under LC (gray diamonds), MC (closed diamonds) and HC (open diamonds) for (c) *B. napus* and (d) *P. deltoides*. In plots, c and d the black line represents the average respiration in the dark (R_d) across all treatments for each species, 2.07 μmol CO₂ m⁻² s⁻¹ and 1.56 μmol CO₂ m⁻² s⁻¹ for *B. napus* and *P. deltoides*, respectively. While the dotted lines represent ½*R_d averaged across all treatments for each species, 1.04 μmol CO₂ m⁻² s⁻¹ and 0.78 μmol CO₂ m⁻² s⁻¹, for *B. napus* and *P. deltoides*, respectively. Measurements represent
means and ±1 SD of five replicates for each treatment. The low-carbon (LC) was 1.19 mmol Γ^{-1} , medium-carbon (MC) was 5.95 mmol Γ^{-1} and high-carbon (HC) was 11.9 mmol Γ^{-1} . **Fig. 7** CO₂-response curves for the percentage of xylem-transported CO₂ assimilation (13 A_x) to total rates of photosynthesis under LC (light gray hexagons), MC (dark gray hexagons) and HC (closed hexagons) for (a) *B. napus* and (b) *P. deltoides*. Light-response curves for the efflux of 13 CO₂ exiting the leaf in the light (13 C_{light efflux}) under LC (light gray diamonds), MC (dark gray diamonds), HC (closed diamonds) for (c) *B. napus* and (d) *P. deltoides*. In plots, c and d the black line represents the average respiration in the dark (R_d) across all treatments for each species, 2.08 μmol CO₂ m⁻² s⁻¹ and 1.86 μ mol CO₂ m⁻² s⁻¹ for *B. napus* and *P. deltoides*, respectively. While the dotted lines represent ½*R_d averaged across all treatments for each species, 1.04 μ mol CO₂ m⁻² s⁻¹ and 0.93 μ mol CO₂ m⁻² s⁻¹, for *B. napus* and *P. deltoides*, respectively. Measurements represent means and ±1 SD of five replicates for each treatment. The low-carbon (LC) was 1.19 mmol l⁻¹, medium-carbon (MC) was 5.95 mmol l⁻¹ and high-carbon (HC) was 11.9 mmol l⁻¹. **TABLES** Table 1 Definitions and units for symbols in the text. All units are μ mol CO $_2$ m $^{-2}$ s $^{-1}$. | Symbol | Definition | Equations/notes | |---|---|---| | ¹² A _{obs} | Net ¹² CO ₂
assimilations | Measured with the TDL | | $^{13}A_{obs}$ | Net ¹³ CO ₂ assimilations | Measured with the TDL | | ¹³ A _{pred} | Predicted atmospheric ¹³ CO ₂ assimilation | Equation 1 | | ¹³ C _{dark efflux} | Efflux of $^{13}CO_2$ in the dark. | Measured with the TDL See Stutz <i>et al</i> . 2017 | | ¹³ C _{pred efflux} | Predicted rate of xylem ¹³ CO ₂ efflux assuming no xylem transported CO ₂ is used for photosynthesis | See Stutz <i>et al</i> .
2017 | | ¹³ C _{light efflux} | Calculated ¹³ C _{efflux} in the light | Equation 2 | | ¹³ A _x | Assimilation of xylem transported CO ₂ | Equation 3 | Fig. 1